The functional role of the medial motion area V6
نویسندگان
چکیده
In macaque, several visual areas are devoted to analyze motion in the visual field, and V6 is one of these areas. In macaque, area V6 occupies the ventral part of the anterior bank of the parieto-occipital sulcus (POs), is retinotopically-organized and contains a point-to-point representation of the retinal surface. V6 is a motion sensitive area that largely represents the peripheral part of the visual field and whose cells are very sensitive to translational motion. Based on the fact that macaque V6 contains many real-motion cells, it has been suggested that V6 is involved in object-motion recognition. Recently, area V6 has been recognized also in the human brain by neuroimaging and electrophysiological methods. Like macaque V6, human V6 is located in the POs, is retinotopically organized, and represents the entire contralateral hemifield up to the far periphery. Human V6, like macaque V6, is a motion area that responds to unidirectional motion. It has a strong preference for coherent motion and a recent combined VEPs/fMRI work has shown that area V6 is even one of the most early stations coding the motion coherence. Human V6 is highly sensitive to flow field and is also able to distinguish between different 3D flow fields being selective to translational egomotion. This suggests that this area processes visual egomotion signals to extract information about the relative distance of objects, likely in order to act on them, or to avoid them. The view that V6 is involved in the estimation of egomotion has been tested also in other recent fMRI studies. Thus, taken together, human and macaque data suggest that V6 is involved in both object and self-motion recognition. Specifically, V6 could be involved in "subtracting out" self-motion signals across the whole visual field and in providing information about moving objects, particularly during self-motion in a complex and dynamically unstable environment.
منابع مشابه
Parallel motion signals to the medial and lateral motion areas V6 and MT +
MT+ and V6 are key motion areas of the dorsal visual stream in both macaque and human brains. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to find the electrophysiological correlates of V6 and to define its temporal relationship with the activity observed in MT+. We also determined the spatio-temporal profile of the motion...
متن کاملHuman V6: The Medial Motion Area
Cortical-surface-based functional Magnetic Resonance Imaging mapping techniques and wide-field retinotopic stimulation were used to verify the presence of pattern motion sensitivity in human area V6. Area V6 is highly selective for coherently moving fields of dots, both at individual and group levels and even with a visual stimulus of standard size. This stimulus is a functional localizer for V...
متن کاملMotion sensitivity of human V6: A magnetoencephalography study
Recent studies suggest the presence of a human homologue of monkey V6 in the dorsal posterior bank of the parieto-occipital sulcus. Monkey V6 comprises a retinotopic representation with relative peripheral visual field emphasis and is sensitive to visual motion. We studied sensitivity to visual motion in human parieto-occipital sulcus. Our upper peripheral visual field stimulus enabled us to di...
متن کاملThe cortical connections of area V6: an occipito-parietal network processing visual information.
The aim of this work was to study the cortical connections of area V6 by injecting neuronal tracers into different retinotopic representations of this area. To this purpose, we first functionally recognized V6 by recording from neurons of the parieto-occipital cortex in awake macaque monkeys. Penetrations with recording syringes were performed in the behaving animals in order to inject tracers ...
متن کاملThe medial parietal occipital areas in the macaque monkey.
The number, location, extent, and functional properties of the cortical areas that occupy the medial parieto-occipital cortex (mPOC) have been, and still is, a matter of scientific debate. The mPOC is a convoluted region of the brain that presents a high level of individual variability, and the fact that many areas of mPOC are located within very deep sulci further limits the possibility to inv...
متن کامل